Erosion Control Design for Stormwater Basins

Barney Blackburn, PE, CPESC, CPSWQ NCDOT – Roadside Environmental Unit Soil & Water Engineering Section Supervisor

Design Criteria

- Maximum Drainage Area = 100 acres
- Minimum Surface Area (ft²) = 435 x Q_{10} (or Q_{25})
- Minimum Volume = 1800 ft³ per Disturbed Acre
- Dewatering Mechanisms: Skimmer + Riser Spillway
- Minimum Dewatering Time = 24 hours

Design Procedure

- 1. Determine flow (Q) to Basin
- 2. Determine Disturbed Area Draining to Basin
- 3. Compute Required Surface Area
- 4. Compute Required Sediment Storage
- 5. Compare Requirements to Stormwater Basin Dimensions

Dewatering Analysis

- Size Skimmer Orifice based on Volume of Stormwater Basin
- Use Volume of Stormwater Basin <u>1 ft.</u> above Basin Bottom
- Choose appropriate size Skimmer
- Check Primary Spillway (Riser) to Convey 2-yr Storm
 NCDOT Primary and Emergency Spillways Convey 50-yr Storm

Case Study: Timber Drive Project

- Located in Garner, NC
- Length of 1.5 miles
- Construction began in July 2010
- Surrounding Land Use:
 - -Shopping Centers
 - -Private Home Sites
 - -Forests

Stormwater Basin Design Info (EC)

- Disturbed Area = 13.3 Acres
- Undisturbed Area = 0.02 Acres
- $Q_{25*} = 23.23 \text{ cfs}$
 - *-Neuse River Basin

cormwater Basin Design Spreadshe			
A	В С		D
25-Year Stormwater Basin Design	TIP No.:	X-XXXX	
Construction Sheet #	D	aleigh	
Design 1	TS.	aleign	
17			
Basin ID(Sta. No./Const. Line/lt,rt or median)			
Calculate Peak Flow: Q = CIA			
Time of Concentration,Tc (min) =	30	5	5
Disturbed Area (Acres)	13.3	0	0
Undisturbed Area 1 (Acres)	0.02	0	0
1 Undisturbed Area 2 (Acres) 2 Undisturbed Area 3 (Acres)	0	0	0
3 Total Drainage Area (Acres)	13.32	0.00	0.00
4 Disturbed Area C Factor	0.45	0.00	0.00
5 Undisturbed Area 1 C Factor	0.05	0.00	0.00
6 Undisturbed Area 2 C Factor	0.00	0.00	0.00
7 Undisturbed Area 3 C Factor	0.00	0.00	0.00
8 Total Drainage Area C	0.45	N/A	N/A
9 Rainfall Intensity Factor (in/hr)	3.88	7.78	7.78
Peak Flow Rate Q ₂₅ (ft ³ /s)	23 23	N/A	N/A
1 Required Surface Area and Sediment Storage		10.7	
2 Surface Area (ft²) = 435 x Q ₂₅	10103	N/A	N/A
3 Sediment Storage (ft ³) = 1800 ft ³ per Disturbed Acre	23940	N/A	N/A
4 Suggested Basin Size	23340	N/A	IVA
5 Length (ft)	142	N/A	N/A
6 Width (ft)	71	N/A	N/A
7 Stormwater Basin Dimensions		INO.	IVO.
8 Basin Length (ft)	174		
9 Basin Width (ft)	87		
0 Basin Depth (ft)	6		
1 Basin Sideslope Grade (i.e. 2 for 2:1)	3		
2 Stormwater Basin Analysis			
Basin Surface Area (ft²)	15138	N/A	N/A
4 Basin Volume (ft ³)	65232	N/A	N/A
5 Additional Storage Requirement (ft ³)	0	N/A	N/A
6 Skimmer Sizing		1,47.1	3,863
7 Orifice Diameter (in.)	3.875	N/A	N/A
8 Skimmer Size (in.)	4	N/A	N/A

Construction Concerns

- Rock Layer Close to Surface
- Sandy Loam Material Used for Berms
 Onsite
- Inadequate Compaction of Soil in Berm

Erosion at Barrel Pipe

Repair Plan

- Interim EC Design with Temporary Berm
- Rebuild Embankment with Clay Material
- Achieve 90% Compaction of AASHTO T 99 Test
- Install Anti-Seep Collar on Barrel Pipe

Intermediate Design Information

- Disturbed Area = 9 Acres
- Undisturbed Area = 1 Acre
- $Q_{25*} = 21.75 \text{ cfs}$
 - *-Neuse River Basin

Design Constraints

- Rock Layer Close to Surface
- Soils
- High Water Table
- Topography
- Width of Stormwater Basin

Dry Detention Basin on Slope

Width of Stormwater Basin – 240 ft.

Width of Skimmer Basin – 80 ft.

Dry Detention Basin Constructed

Dry Detention Basin Constructed

Small Hazardous Spill Basin

NCDOT Stormwater Basins

- Dry Detention Basin
- Wet Detention Basin
- Hazardous Spill Basin

http://ncdot.org/doh/PRECONSTRUCT/highway/hydro/pdf/StormwaterBMPMarch08 A1.pdf

Basin with Skimmer and Stone Spillway

Hazardous Spill Basin with Skimmer

Hazardous Spill Basin w/ Pool

Construction Specs

- Minimum of 3 Baffles with Equal Spacing
- Anti-Seep Collars

ftp://ftp-fc.sc.egov.usda.gov//IL/engineer/supplements/6-36.1.pdf

- Berm Material
 - -Compact Embankment to at least 90% of AASHTO T 99 Test

Slope Stabilization

- Permanent Seed Mix
- Matting (Excelsior at minimum)
- Permanent Matting (TRM)
- Geotextile (NCDOT Type 4, 50 mil., etc.)
 - -Interim
 - -Impermeable

Enhancements to Stormwater Basins

- Forebays / Energy Dissipators
- Incorporation of Flocculants
- Infiltration

Design Tips

- Convey Runoff to Basin in Non-erosive Manner
- Remember Volumes for Skimmer Orifice
 - -Volume of Stormwater Basin
 - -Volume of Basin 1 ft. above bottom
- Include <u>ALL</u> Construction Specifications

Before Basin becomes Permanent...

- ALL Drainage Areas to Basin Stabilized
- Drainage System Completely Installed
- Interior Slopes Stabilized
- Sediment in Basin Removed

Detention Basin Needs Maintenance

Skimmer in Sediment

Web Site

• Stormwater Basin Design Spreadsheet

http://www.ncdot.org/doh/operations/dp_chief_eng/roadside/soil_water/erosion_control/downloads.html

Detail

http://www.ncdot.org/doh/operations/dp_chief_eng/roadside/soil_water/Details/

• Special Provision

http://www.ncdot.org/doh/operations/dp_chief_eng/roadside/soil_water/special_provisions/

